Publications

 

2020

(16)  K. Chen, C. Downes, E. Schneider, J. Goodpaster, S. Marinescu, "Improving and Understanding the Hydrogen Evolving Activity of a Cobalt Dithiolene Metal-Organic Framework," submitted to JACS.

(15)  E. Beaumier, C. Gordon, R. Harkins, M. McGreal, X. Wen, C. Copéret, J. Goodpaster, I. Tonks, "Cp2Ti(κ2-tBuNCNtBu): an Unusual κ2 Coordination Mode of a Heterocumulene Featuring a Free Carbene," submitted to JACS.

(14) J. Yuan, X. Wen, C.-Q. Ke, C.-H. Xu, H.-C. Liu, S. Yao, J. Goodpaster, C. Tang, Y. Ye "Tricarabrols A-C, three sesquiterpene lactone trimers featuring methylene-tethered linkage from Carpesium faberi," submitted to Organic Letters.

(13) J. Brooks, D. Chulhai, J. Goodpaster, and R. Frontiera, "Plasmon-mediated intramolecular methyl migration," submitted.

(12) D. Graham, X. Wen, D. Chulhai, J. Goodpaster, "Robust, accurate, and efficient: quantum embedding using the Huzinaga level-shift projection operator for complex systems," accepted to Journal of Computational and Theoretical Chemistry

https://pubs.acs.org/doi/10.1021/acs.jctc.9b01185

(11) A. Espinasse, X. Wen, J. Goodpaster, and E. Carlson, "Mechanistic Studies of Bioorthogonal ATP Analogs for Assessment of Histidine Kinase Autophosphorylation" accepted at ACS Chemical Biology.

https://pubs.acs.org/doi/abs/10.1021/acschembio.9b01024

(10) Wen, X.; Graham, D. S.; Chulhai, D. V.; Goodpaster, J. D. "Absolutely Localized Projection-Based Embedding for Excited States," J. Chem. Theory Comput. 2020, 16, 1, 385-398.

https://doi.org/10.1021/acs.jctc.9b00959

2019

(9) J. Brooks, D. Chulhai, J. Goodpaster, and R. Frontiera, "Plasmon-Driven C-N Bond Cleavage across a Series of Viologen Derivatives," The Journal of Physical Chemistry C 2019, 123, 48, 29306-29313

https://doi.org/10.1021/acs.jpcc.9b08179

(8) E. Beaumier, M. McGreal, A. Pancoast, R. Wilson, J. Moore, B. Graziano, J Goodpaster, and I. Tonks, "Carbodiimide Synthesis via Ti-Catalyzed Nitrene Transfer from Diazenes to Isocyanides," ACS Catalysis 2019, 9, 12, 11753-11762

https://doi.org/10.1021/acscatal.9b04107

(7) Ramakrishnam Raju, M. V.; Wilharm, R. K.; Dresel, M. J.; McGreal, M. E.; Mansergh, J. P.; Marting, S. T.; Goodpaster, J. D.; Pierre, V. C. Inorg. Chem. 2019, 58, 22, 15189-15201

http://dx.doi.org/10.1021/acs.inorgchem.9b02133

(6) Petras, H. R.; Graham, D. S.; Ramadugu, S. K.; Goodpaster, J. D.; Shepherd, J. J. J. Chem. Theory Comput. 2019 15 (10), 5332-5342

http://dx.doi.org/10.1021/acs.jctc.9b00571

(5) J. Goodpaster, "Theoretical Chemistry Answers Bimolecular Signaling Debate in [4Fe4S] Proteins. Chem, 5(1), 12-14

https://www.sciencedirect.com/science/article/pii/S2451929418305850

2018

(4) Zachary W Davis-Gilbert, Xuelan Wen, Jason D. Goodpaster, and Ian A. Tonks, "On the Mechanism of Ti-Catalyzed Oxidative Nitrene Transfer in [2+2+1] Pyrrole Synthesis from Alkynes and Azobenzene", J. Am. Chem. Soc. 2018, 140, 23, 7267-7281

https://pubs.acs.org/doi/10.1021/jacs.8b03546

(3) D. V. Chulhai and J. D. Goodpaster, “Projection-Based Correlated Wave Function in Density Functional Theory Embedding for Periodic Systems.” J. Chem. Theory Comput. 14, 1928 (2018).

https://pubs.acs.org/doi/10.1021/acs.jctc.7b01154

2017

(2) M. R. Singh, J. D. Goodpaster, A. Z. Weber, M. Head-Gordon, and A. T. Bell, “Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models” Proc. Natl. Acad. Sci. 114, E8812 (2017).

https://www.pnas.org/content/114/42/E8812

(1) D. V. Chulhai and J. D. Goodpaster, “Improved Accuracy and Efficiency in Quantum Embedding through Absolute Localization” J. Chem. Theory Comput. 13, 1503 (2017).

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00034

Pre-2017

P. Huo, C. Uyeda, J. D. Goodpaster, J. C. Peters, T. F. Miller, “Breaking the correlation between energy costs and kinetic barriers in hydrogen evolution via a cobalt pyridine-diimine-dioxime catalysts” ACS Catal., 6, 6114 (2016).

J. D. Goodpaster, Alexis T. Bell, and Martin Head-Gordon, “Identification of Possible Pathways for C–C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model” J. Phys. Chem. Lett., 7, 1471 (2016).

J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III, Accurate and systematically improvable density functional theory embedding for correlated wavefunctions, J. Chem. Phys., 140, 18A507 (2014).

T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller III, Accurate basis set truncation for wavefunction embedding, J. Chem. Phys., 139, 024103 (2013).

J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III, Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes, J. Chem. Phys., 137, 224113 (2012).

F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, A simple, exact density-functional-theory embedding scheme, J. Chem. Theory Comput., 8, 2564 (2012).

J. D. Goodpaster, T. A. Barnes, and T. F. Miller III, Embedded density functional theory for covalently bonded and strongly interacting subsystems, J. Chem. Phys., 134 , 164108 (2011).

J. D. Goodpaster, T. A. Barnes, N. Ananth, and T. F. Miller III, Exactly embedded density functional theory methods for the rst-principles modeling of reactions in complex systems, Proceedings of the 27th Army Science Conference, Orlando, FL (2010).

J. D. Goodpaster, N. Ananth, F. R. Manby, and T. F. Miller III, Exact non-additive kinetic potentials for embedded density functional theory, J. Chem. Phys., 133, 084103 (2010).

X. P. Wang, N. Kariuki, J. T. Vaughey, J. D. Goodpaster, R. Kumar, and D. J. Myers, Bimetallic Pd-Cu oxygen reduction electrocatalysts, J. Electro. Soc., 155, B602-B609 (2008).

J. S. Spendelow, X. Qinqin, J. D. Goodpaster, P. J. A. Kenis, and A. Wieckowski, The role of surface defects in CO oxidation, methanol oxidation, and oxygen reduction on Pt(111), J. Electro. Soc., 154, F238-F242 (2007).

J. S. Spendelow, J. D. Goodpaster, P. J. A. Kenis, and A. Wieckowski, Methanol dehydrogenation and oxidation of Pt(111) is alkaline solutions, J. Electro. Soc., 22, 10457-10464 (2006).

J. S. Spendelow, J. D. Goodpaster, P. J. A. Kenis, and A. Wieckowski, Mechanism of CO oxidation of Pt(111) in alkaline media, J. Phys. Chem. B., 110, 9545-9555 (2006).